Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP).
نویسندگان
چکیده
Self-motion detection requires the interaction of a number of sensory systems for correct perceptual interpretation of a given movement and an eventual motor response. Parietal cortical areas are thought to play an important role in this function, and we have thus studied the encoding of multimodal signals and their spatiotemporal interactions in the ventral intraparietal area of macaque monkeys. Thereby, we have identified for the first time the presence of vestibular sensory input to this area and described its interaction with somatosensory and visual signals, via extracellular single-cell recordings in awake head-fixed animals. Visual responses were driven by large field stimuli that simulated either backward or forward self-motion (contraction or expansion stimuli, respectively), or movement in the frontoparallel plane (visual increments moving simultaneously in the same direction). While the dominant sensory modality in most neurons was visual, about one third of all recorded neurons responded to horizontal rotation. These vestibular responses were typically in phase with head velocity, but in some cases they could signal acceleration or even showed integration to position. The associated visual responses were always codirectional with the vestibular on-direction, i.e. noncomplementary. Somatosensory responses were in register with the visual preferred direction, either in the same or in the opposite direction, thus signalling translation or rotation in the horizontal plane. These results, taken together with data on responses to optic flow stimuli obtained in a parallel study, strongly suggest an involvement of area VIP in the analysis and the encoding of self-motion.
منابع مشابه
Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex.
Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately one-half of VIP cells show significant directional...
متن کاملInteraction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP).
Navigation in space requires the brain to combine information arising from different sensory modalities with the appropriate motor commands. Sensory information about self-motion in particular is provided by the visual and the vestibular system. The macaque ventral intraparietal area (VIP) has recently been shown to be involved in the processing of self-motion information provided by optical fl...
متن کاملA comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area.
Vestibular responses have been reported in the parietoinsular vestibular cortex (PIVC), the ventral intraparietal area (VIP), and the dorsal medial superior temporal area (MSTd) of macaques. However, differences between areas remain largely unknown, and it is not clear whether there is a hierarchy in cortical vestibular processing. We examine the spatiotemporal characteristics of macaque vestib...
متن کاملMultisensory space representations in the macaque ventral intraparietal area.
Animals can use different sensory signals to localize objects in the environment. Depending on the situation, the brain either integrates information from multiple sensory sources or it chooses the modality conveying the most reliable information to direct behavior. This suggests that somehow, the brain has access to a modality-invariant representation of external space. Accordingly, neural str...
متن کاملParietal area VIP causally influences heading perception during pursuit eye movements.
The ventral intraparietal area (VIP) of the macaque monkey brain is a multimodal area with visual, vestibular, somatosensory, and eye movement-related responses. The visual responses are strongly directional, and VIP neurons respond well to complex optic flow patterns similar to those found during self-motion. To test the hypothesis that visual responses in VIP directly contribute to the percep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2002